本文へスキップ

Ishikawa Prefectural University. Nishizawa Naoko President

業績ACHIEVEMENT

  

原著論文(2009年以降)

2023年
91. Lee, S., Rahman, M. M., Nakanishi, H., Nishizawa, N. K., An, G., Nam, H. G. and Jeon, J. S. (2023) Concomitant activation of OsNAS2 and OsNAS3 contributes to the enhanced accumulation of iron and zinc in rice. Intl. J. Mol. Sci. 24, 6568. DOI: 10.3390/ijms24076568

2022年
90. Kobayashi, T., Maeda, K., Suzuki, Y. and Nishizawa, N.K. (2022) Simultaneous enhancement of iron deficiency tolerance and iron accumulation in rice by combining the knockdown of OsHRZ ubiquitin ligases with the introduction of engineered ferric-chelate reductase. Rice. 15, 54. DOI : 10.1186/s12284-022-00598-w

89. Kobayashi, T., Shinkawa, H., Nagano, A. J. and Nishizawa, N.K. (2022) The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. Plant J. 110, 1731-1750. DOI: 10.1111/TPJ.15767

2021年
88.Kakei, Y., Masuda, H., Nishizawa, N.K., Hattori, H.,and Aung, M.S. (2021) Elucidation of novel cis-regulatory elements and promoter structures involved in iron excess response mechanisms in rice using a bioinformatics approach. Front Plant Sci. 12, 660303. doi: 10.3389/fpls.2021.660303

87. Suzuki, M., Urabe, A., Sasaki, S., Tsugawa, R., Nishio, S., Mukaiyama, H., Murata, Y., Masuda, H., Aung, M.S., Mera, A., Takeuchi, M., Fukushima, K,, Kanaki, M., Kobayashi, K., Chiba, Y., Shrestha, B.B., Nakanishi, H., Watanabe, T., Nakayama, A., Fujino, H., Kobayashi, T., Tanino, K., Nishizawa, N.K. and Namba, K. (2021) Development of a mugineic acid family phytosiderophore analog as an iron fertilizer. Nat. Commun. 12, 1558. DOI: 10.1038/s41467-021-21837-6

86. Kobayashi, T., Nagano, A. J. and Nishizawa, N.K. (2021) Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice. J. Exp. Bot. 72, 2196-2211. DOI: 10.1093/jxb/eraa546

2020年
85. Senoura, T., Kobayashi, T., An, G., Nakanishi, H. and Nishizawa, N.K. (2020) Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. Plant Mol. Biol. 104, 629-645. DOI: 10.1007/s11103-020-01065-0

84. Wang, F., Itai, R.N., Nozoye, T., Kobayashi, T., Nishizawa, N.K. and Nakanishi, H. (2020) The bHLH protein OsIRO3 is critical for plant survival and iron (Fe) homeostasis in rice (Oryza sativa L.) under Fe-deficient conditions. Soil Sci. Plant Nutr. 66, 579-592. DOI: 10.1080/00380768.2020.1783966

2019年
83. Ishimaru, T., Parween, S., Saito, Y., Shigemitsu, T., Yamakawa, H., Nakazono, M., Masumura, T., Nishizawa, N.K., Kondo, M. and Sreenivasulu, N. (2019) Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiol. 60, 626-642. DOI: 10.1093/pcp/pcy233

82. Kobayashi, T., Ozu, A., Kobayashi, S., An, G., Jeon, J.S. and Nishizawa, N.K. (2019) OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. Plant Mol. Biol. 101, 471-486.

81. Masuda, H., Aung, M.S., Kobayashi, T., Hamada, T. and Nishizawa, N.K. (2019) Enhancement of iron acquisition in rice by the mugineic acid synthase gene with ferric iron reductase gene and OsIRO2 confers tolerance in submerged and non-submerged calcareous soils. Front. Plant Sci. 10, 1179.

80. Aung, M.S., Masuda, H., Nozoye, T., Kobayashi, T., Jeon, J.S., An, G. and Nishizawa, N.K. (2019) Nicotianamine synthesis by OsNAS3 is important for mitigating iron excess stress in rice. Front. Plant Sci. 10, 660.

79. Nozoye, T., Von Wirén, N., Sato, Y., Higashiyama, T., Nakanishi, H. and Nishizawa, N.K. (2019) Characterization of the Nicotianamine Exporter ENA1 in Rice. Front. Plant Sci. 10, 502.

2018年
78. Dai J, Wang N, Xiong H, Qiu W, Nakanishi H, Kobayashi T, Nishizawa NK and Zuo Y. The Yellow Stripe-Like (YSL) gene functions in internal copper transport in peanut. Gene, 9: 635.

77. Masuda H, Aung M. S, Maeda K, Kobayashi T, Takata N, Taniguchi T and Nishizawa NK. Iron-deficiency response and expression of genes related to iron homeostasis in poplars. Soil Science and Plant Nutririon, 64(5): 576-588. https://doi.org/10.1080/00380768.2018.1480325

76. Aung MS, Kobayashi T, Masuda H and Nishizawa NK. Rice HRZ ubiquitin ligases are crucial for the response to excess iron. Physiologia Plantarum, 164(3): 282-296. DOI: 10.1111/ppl.12698

75. Aung MS, Masuda H, Kobayashi T, Nishizawa NK. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Science and Plant Nutririon, 64(3): 370-385. DOI: 10.1080/00380768.2018.1443754

2017年
74. Nozoye T, Aung MS, Masuda H, Nakanishi H, Nishizawa NK. Bioenergy grass [Erianthus ravennae (L.) Beauv.] secretes two members of mugineic acid family phytosiderophores which involved in their tolerance to Fe deficiency. Soil Science and Plant Nutrition, 63(6): 543-552.

73. Senoura T, Sakashita E, Kobayashi T, Takahashi M, Aung MS, Masuda H, Nakanishi H, Nishizawa NK. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Molecular Biology, 95: 375-387.

72. Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. The Plant Cell, 29: 775–790.

71. Masuda H, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung M. S, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One, 12: e0173441.

2016年
70. Nozoye T, Otani M, Senoura T, Nakanishi H, Nishizawa NK. Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant and Soil, 410: 1-14.

69. Suzuki M, Nozoye T, Nagasaka S, Nakanishi H, Nishizawa NK, Moro S. The detection of endogenous 2’-deoxymugineic acid in olives (Olea europaea L.) indicates the biosynthesis of mugineic acid family phytosiderophores in non-graminaceous plants. Soil Science and Plant Nutrition, 62(5-6): 481-488.

68. Aung MS, Masuda H, Kobayashi T, Kakei Y, Tun YT, Nakanishi H, Yamakawa T, Nishizawa NK. Identification of mineral-rich rice varieties in Myanmar. Myanmar Agri. Res. J, September: 15-26.

67. Kobayashi T, Itai, RN, Senoura T, Oikawa T, Ishimaru Y, Ueda M, Nakanishi H, Nishizawa NK. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. Plant Molecular Biology, 91: 533-547.

66. Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. Journal of Experimental Botany, 67: 1357-1368.

2015年
65. Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. The Journal of Biological Chemistry, 290: 27688-27699.

64. Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K and Nakazono, M. Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots. Plant Physiology, vol. 169: 180-193.

63. Nozoye T, Nakanishi H, Nishizawa NK. Transcriptomic analyses of maize ys1 and ys3 mutants reveal maize iron homeostasis. Genomics Data, 5: 97-99.

62. Uwagaki Y, Matsuda E, Komaki M, Murahama M, Otani M, Nishizawa NK, Hamada T. Agrobacterium-mediated transformation and regeneratin of Freesia×hybrida. Plant Biotechnology, 32: 165-168.

61. Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, Nakanishi H, Nishizawa NK. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Molecular Biology, 88:165-176.

60. Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Annals of Botany, 115, 879-894.

59. Ito S, Nozoye T, Sasaki E, Imai M, Shiwa Y, Shibata-Hatta M, Ishige T, Fukui K, Ito K, Nakanishi H, Nishizawa NK, Yajima S, Asami T. “Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS ONE, 10(3): e0119724.

2014年
58. Ogo Y, Kakei Y, Itai RN, Kobayashi T, Nakanishi H, Takahashi H, Nakazono M, Nishizawa NK. Spatial transcriptomes of iron-deficient and cadmium-stressed rice. New Phytologist, 201: 781-794.

57. Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK. Transcriptomic analysis of rice in response to iron deficiency and excess. Rice, 7: 18.

56. Nozoye T, Kim S, Kakei Y, Takahashi M, Nakanishi H, Nishizawa NK. Enhanced levels of nicotianamine promote iron accumulation and tolerance to calcareous soil in soybean. Bioscience, Biotechnology, and Biochemistry, 78: 1677-1684.

55. Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). The Plant Journal, 80: 40-51.

54. Xiong H, Guo X, Kobayashi T, Kakei Y, Nakanishi H, Nozoye T, Zhang L, Shen H, Qiu W, Nishizawa NK, Zuo Y. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition. Plant Physiology and Biochemistry, 80: 83–89.

53. Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik Al-I, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 65: 4795-4806.

52. Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K, Suzuki N, Kawachi N, Ishii S, Yin Y-G, Fujimaki S, Nishizawa NK, Nakanishi H. From Laboratory to Field: OsNRAMP5-Knockdown Rice Is a Promising Candidate for Cd Phytoremediation in Paddy Fields. PLOS ONE, 9(6): e98816.

51. Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Signaling and Behavior, 4: 9.

50. Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. The Plant Journal, 77: 246-260.

49. Zhang L, Nakanishi Itai R, Yamakawa T, Nakanishi H, Nishizawa NK, Kobayashi T. The Bowman–Birk Trypsin Inhibitor IBP1 Interacts with and Prevents Degradation of IDEF1 in Rice. Plant Molecular Biology Reporter, 32: 841-851.

2013年
48. Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature communications, 4: 2792.

47. Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice, 6: 31.

46. Kakei Y, Ogo Y, Itai RN, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK. Development of a novel prediction method of cis-elements to hypothesize collaborative functions of cis-element pairs in iron-deficient rice. Rice, 6: 22.

45. Itai RN, Ogo Y, Kobayashi T, Nakanishi H, Nishizawa NK. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice, 6:16.

44. Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa NK. Iron biofortification of myanmar rice. Frontiers in Plant Science, 4: 158.

43. Masuda H, Kobayashi T, Ishimaru, Takahashi M, Aung MS, Nakanishi H, Mori S, Nishizawa NK. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Frontiers in Plant Science, 4: 132.

42. Xiong H, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen H, Zhang F, Nishizawa NK, Zuo Y. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant, Cell and Environment, 36: 1888-1902.

41. Nozoye T, Nakanishi H, Nishizawa NK. Characterizing the Crucial Components of Iron Homeostasis in the Maize Mutants ys1 and ys3. PLOS ONE, 8: e625.

2012年
40. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 109: 19166-19171.

39. Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling and Behavior, 7: 1605-1607.

38. Masuda H, Ishimaru Y, May Sann Aung, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Scientific Reports, 2: 543.

37. Xiong H, Kobayashi T, Kakei Y, Senoura T, Nakazono M, Takahashi H, Nakanishi H, Shen H, Guo P-D-X, Nishizawa NK, Zuo Y. AhNRAMP1 iron transporter is involved in iron acquisition in peanut. Journal of Experimental Botany, 63: 4437-4446.

36. Ishimaru Y, Bashir K, Nakahishi H, Nishizawa NK. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signaling and Behavior, 7: 763-766.

35. Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK. OsYSL16 plays a role in the allocation of iron. Plant Molecular Biology, 79: 583-594.

34.Bashir K, Ishimaru Y, Nishizawa NK. Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 36: 189-201.

33. Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa NK. Accumulation of starch in Zn-deficient rice. Rice, 5: 9-18.

32. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell and Environment, 35: 1548-1597.

31. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports, 2: 286.

30. Kobayashi T, Nakanishi Itai R, May Sann Aung, Senoura T, Nakanishi H, Nishizawa NK. The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. The Plant Journal, 61: 81-91.

2011年
29. Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling and Behavior, 6: 1813-1816.

28. Bashir K, Ishimaru Y, Shimo H, Kakei Y, Senoura T, Takahashi R, Sato Y, Sato Y, Uozumi N, Yamakawa T, Nakanishi H, Nishizawa NK. Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Science and Plant Nutrition, 57: 803-812.

27. Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 62: 5727-5734.

26. Zhang M, Senoura T, Yang X, Nishizawa NK. Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance. FEBS Letters, 585: 2604–2609.

25. Zhang M, Senoura T, Yang X, Chao Y, Nishizawa NK. Lhcb2 gene expression analysis in two ecotypes of Sedum alfredii subjected to Zn/Cd treatments with functional analysis of SaLhcb2 isolated from a Zn/Cd hyperaccumulator. Biotechnology Letters, 33: 1865–1871.

24. Ishimaru Y, Kakei Y, Shimo H, Bashir K, Nakanishi H, Sato Y, Sato Y, Uozumi N, Nishizawa NK. A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. The Journal of Biological Chemistry, 286: 24649-24655.

23. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 62: 4843-4850.

22. Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK. The rice mitochondrial iron transporter is essential for plant growth. Nature Communications, 2: 322.

21. Takahashi H, Saika H, Matsumura H, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Annals of Botany, 108: 253-261.

20. Ogo Y, Nakanishi Itai R, Kobayashi T, May Sann Aung, Nakanishi H, Nishizawa NK. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Molecular Biology, 75: 593-605.

19. Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytologist, 190: 351-368.

18. Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. Phytosiderophore efflux transporters are crucial for iron acquisition in Graminaceous plants. The Journal of Biological Chemistry, 286: 5446-5454.

2010年
17. Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa NK, Lopez-Molina L. Identification of growth insensitive to ABA3 (gia3), a Recessive Mutation Affecting ABA Signaling for the Control of Early Post-Germination Growth in Arabidopsis thaliana. Plant and Cell Physiology, 51: 239-251.

16. Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. The Plant Journal, 62: 379-390.

15. Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazono M. A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. Journal of Plant Research, 123: 807-813.

14. Kobayashi T, Ogo Y, May SA, Nozoye T, Nakanishi Itai R, Nakanishi H, Yamakawa T, Nishizawa NK. The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Annals of Botany, 105: 1109-1117.

2009年
13. Ishimaru Y, Bashir K, Fujimoto M, An G, Nakanishi Itai R, Tsutsumi N, Nakanishi H, Nishizawa NK. Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Molecular Plant, 2: 1059-1066.

12. Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y, Nakai I, Ishimaru Y, Kobayashi T, Nakanishi H, Nishizawa NK. In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant and Soil, 325: 39-51.

11. Ogawa I, Nakanishi H, Mori S, Nishizawa NK. Time course analysis of gene regulation under cadmium stress in rice. Plant and Soil, 325: 97-108.

10. Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G. Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proceedings of the National Academy of Sciences of the United States of America, 106: 22014-22019.

9. Kobayashi T, Nakanishi Itai R, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK. The rice transcription factor IDEF1 is essential for the early response to iron deficiency and induces vegetative expression of late embryogenesis abundant genes. The Plant Journal, 60: 948-961.

8. Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK. Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice, 2: 155-166.

7. Ito S, Inoue H, Kobayashi T, Yoshiba M, Mori S, Nishizawa NK, Higuchi K. Comparison of the functions of the barley nicotianamine synthase gene HvNAS1 and rice nicotianamine synthase gene OsNAS1 promoters in response to iron deficiency in transgenic tobacco. Soil Science and Plant Nutrition, 55, 277–282

6. Ishimaru T, Horigane AK, Ida M, Iwasawa N, San-oh YA, Nakazono M, Nishizawa NK, Masumura T, Kondo M, Yoshida M. Formation of grain chalkiness and changes inwater distribution in developing rice caryopses grown under high-temperature stress. Journal of Cereal Science, 50: 166–174.

5. Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK. A Highly Sensitive, Quick, and Simple Quantification Method for Nicotianamine and 2''–Deoxymugineic Acid from Minimum Samples Using LC/ESI-TOF-MS Achieves Functional Analysis of these Components in Plants. Plant and Cell Physiology, 50: 1988-1993

4. Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK. OsYSL18 is a rice iron(III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology, 70: 681–692.

3. Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK. 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): Evidence for the direct traslocation of Fe from roots to young leaves via phloem. Plant and Cell Physiology, 50: 48-57.

2. Nagasaka S, Nakanishi-Itai R, Bashir K, Nakanishi H, Mori S, Nishizawa NK. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Plant Molecular Biology, 69: 621-631.

1. Inoue H, Kobayashi T, Nozoye N, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. The Journal of Biological Chemistry, 284: 3470-3479.


著書

4. 森敏・西澤直子ムギネ酸研究の軌跡、WINEP(植物鉄栄養研究会)、2014.

3. 野副朋子・中西啓仁・西澤直子土壌中の鉄を溶かして吸収するためのムギネ酸類分泌トランスポーターの発見、化学と生物、52: 15-22. 2014.

2. 小林高範・西澤直子植物の鉄欠乏応答メカニズム、血液フロンティア 22: 100-104. 2012.

1. Kobayashi T, Nakanishi H, Nishizawa NK. Genes involved in iron acquisition and their application for developing new crops. Gamma Field Symposia, 48. 2009.


総説、補遺、その他

14. Bashir, K., Ahmad, Z., Kobayashi, T., Seki, M. and Nishizawa, N.K. (2021) Roles of subcellular metal homeostasis in crop improvement. J. Exp. Bot. 72, 2083-2098. DOI: 10.1093/jxb/erab018

13. Kobayashi T, Nozoye T and Nishizawa NK. 2019. Iron transport and its regulation in plants. Free Radical Biology and Medicine, 133: 11-20.

12. Bashir K, Rasheed S, Kobayashi T, Seki M and Nishizawa NK. 2016. Regulating subcellular metal homeostasis: the key to crop improvement. Frontiers in Plant Science, 7: 1192.

11.Kobayashi T, Nishizawa NK. Intracellular iron sensing by the direct binding of iron to regulators. Frontiers in Plant Science, 6: 155. 2015.

10.Kobayashi T, Itai RN, Nishizawa NK. Iron deficiency responses in rice roots. Rice, 7: 27. 2014.

9.Kobayashi T, Nishizawa NK. Iron sensors and signals in response to iron deficiency. Plant Science, 224: 36–43. 2014.

8.Ogo Y, Kakei Y, Itai RN, Kobayashi T, Nakanishi H, Nishizawa NK. Tissue-specific transcriptional profiling of iron-deficient and cadmium-stressed rice using laser capture microdissection. Plant Signaling and Behavior, 9: e29427. 2014.

7.Masuda H, Aung MS, Nishizawa NK. Iron biofortification of rice using different transgenic approaches. Rice, 6: 40. 2013.

6.Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK. Exploiting new tools for iron bio-fortification of rice. Biotechnology Advances, 31: 1624-1633. 2013.

5.Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D. Using membrane transporters to improve crops for sustainable food production. Nature, 497: 60-66. 2013.

4.Bashir K, Takahashi R, Nakanishi H, Nishizawa NK. The road to micronutrient biofortification of rice: Progress and prospects. Frontiers in Plant Science, 4: 15. 2013.

3.Kobayashi T, Nishizawa NK. Iron Uptake, Translocation, and Regulation in Higher Plants. The Annual Review of Plant Biology, 63: 131–152. 2012.

2.Ishimaru Y, Bashir K, Nishizawa NK. Zn Uptake and Translocation in Rice Plants. Rice, 4: 21–27. 2011.

1. Bashir K, Ishimaru Y, Nishizawa NK. Iron Uptake and Loading into Rice Grains. Rice, 3: 122-130. 2010.




ナビゲーション

バナースペース