本文へスキップ

Laboratory for Plant Cell Technology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University.

業績(小林高範 教授)ACHIEVEMENT



原著論文(計65報、うち筆頭著者19報、責任著者11報)(* : equal contribution)

2024年
65. Senoura, T., Nozoye, T., Yuki, R., Yamamoto, M., Maeda, K., Sato-Izawa, K., Ezura, H., Itai, R.N., Bashir, K., Masuda, H., Kobayashi, T. (corresponding author), Nakanishi, H. and Nishizawa, N.K. (2024) Molecular-based characterization and bioengineering of Sorghum bicolor to enhance iron deficiency tolerance in iron-limiting calcareous soils. Plant Mol. Biol. In press.

64. Suzuki, M., Suzuki, Y., Hosoda, K., Namba, K. and Kobayashi, T. (corresponding author) (2024) The phytosiderophore analogue proline-2’-deoxymugineic acid is more efficient than conventional chelators for improving iron nutrition in maize. Soil Sci. Plant Nutr. In press. DOI: 10.1080/00380768.2024.2385401

2022年
63.Kobayashi, T. (corresponding author), Maeda, K., Suzuki, Y. and Nishizawa, N.K. (2022) Simultaneous enhancement of iron deficiency tolerance and iron accumulation in rice by combining the knockdown of OsHRZ ubiquitin ligases with the introduction of engineered ferric-chelate reductase. Rice. 15, 54. DOI : 10.1186/s12284-022-00598-w

62.Kobayashi, T. (corresponding author), Shinkawa, H., Nagano, A. J. and Nishizawa, N.K. (2022) The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. Plant J. 110, 1731-1750. DOI: 10.1111/TPJ.15767

2021年
61. Suzuki, M., Urabe, A., Sasaki, S., Tsugawa, R., Nishio, S., Mukaiyama, H., Murata, Y., Masuda, H., Aung, M.S., Mera, A., Takeuchi, M., Fukushima, K,, Kanaki, M., Kobayashi, K., Chiba, Y., Shrestha, B.B., Nakanishi, H., Watanabe, T., Nakayama, A., Fujino, H., Kobayashi, T., Tanino, K., Nishizawa, N.K. and Namba, K. (2021) Development of a mugineic acid family phytosiderophore analog as an iron fertilizer. Nat. Commun. 12, 1558. DOI: 10.1038/s41467-021-21837-6

60. Kobayashi, T. (corresponding author), Nagano, A. J. and Nishizawa, N.K. (2021) Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice. J. Exp. Bot. 72, 2196-2211. DOI: 10.1093/jxb/eraa546

2020年
59. Senoura, T., Kobayashi, T. (corresponding author), An, G., Nakanishi, H. and Nishizawa, N.K. (2020) Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. Plant Mol. Biol. 104, 629-645. DOI: 10.1007/s11103-020-01065-0

58. Wang, F., Itai, R.N., Nozoye, T., Kobayashi, T., Nishizawa, N.K. and Nakanishi, H. (2020) The bHLH protein OsIRO3 is critical for plant survival and iron (Fe) homeostasis in rice (Oryza sativa L.) under Fe-deficient conditions. Soil Sci. Plant Nutr. 66, 579-592. DOI: 10.1080/00380768.2020.1783966

2019年
57. Kobayashi, T. (corresponding author), Ozu, A., Kobayashi, S., An, G., Jeon, J.S. and Nishizawa, N.K. (2019) OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. Plant Mol. Biol. 101, 471-486.

56. Masuda, H., Aung, M.S., Kobayashi, T., Hamada, T. and Nishizawa, N.K. (2019) Enhancement of iron acquisition in rice by the mugineic acid synthase gene with ferric iron reductase gene and OsIRO2 confers tolerance in submerged and non-submerged calcareous soils. Front. Plant Sci. 10, 1179.

55. Aung, M.S., Masuda, H., Nozoye, T., Kobayashi, T., Jeon, J.S., An, G. and Nishizawa, N.K. (2019) Nicotianamine synthesis by OsNAS3 is important for mitigating iron excess stress in rice. Front. Plant Sci. 10, 660.

2018年
54. Dai, J., Wang, N., Xiong, H., Qiu, W., Nakanishi, H., Kobayashi, T., Nishizawa, N.K. and Zuo, Y. (2018) The Yellow Stripe-Like (YSL) gene functions in internal copper transport in peanut. Gene. 9: 635.

53. Masuda, H., Aung, M. S., Maeda, K., Kobayashi, T., Takata, N., Taniguchi, T. and Nishizawa, N.K. (2018) Iron-deficiency response and expression of genes related to iron homeostasis in poplars. Soil Sci. Plant Nutr. 64 (5): 576-588. https://doi.org/10.1080/00380768.2018.1480325

52. Aung, M. S., Kobayashi, T. (corresponding author), Masuda, H. and Nishizawa, N.K. (2018) Rice HRZ ubiquitin ligases are crucial for the response to excess iron. Physiol. Plant. 163: 282-296. DOI: 10.1111/ppl.12698

51. Aung, M. S., Masuda, H., Kobayashi, T. and Nishizawa, N.K. (2018) Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Sci. Plant Nutr. 64, 370-385.

2017年
50. Senoura, T., Sakashita, E., Kobayashi, T., Takahashi, M., Aung, M. S., Masuda, H., Nakanishi, H. and Nishizawa, N.K. (2017) The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Mol. Biol. 95, 375-387.

49. Masuda, H., Shimochi, E., Hamada, T., Senoura, T., Kobayashi, T., Aung, M. S., Ishimaru, Y., Ogo, Y., Nakanishi, H., and Nishizawa, N.K. (2017) A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS ONE 12, e0173441.

2016年
48. Kobayashi, T. (corresponding author), Itai, R.N., Senoura, T., Oikawa, T., Ishimaru, Y., Ueda, M., Nakanishi, H., and Nishizawa, N.K. (2016) Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. Plant Mol. Biol. 91, 533-547.

47. Aung, M.S., Masuda, H., Kobayashi, T., Kakei, Y., Tun, Y.T., Nakanishi, H., Yamakawa, T., and Nishizawa, N.K. (2016) Identification of mineral-rich rice varieties in Myanmar. Myanmar Agr. Res. J. September, 15-26.

2015年
46. Nozoye, T., Nagasaka, S., Kobayashi, T., Sato, Y., Uozumi, N., Nakanishi, H., and Nishizawa, N.K. (2015) The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J. Biol. Chem. 290, 27688-27699.

2014年
45. Zhang, L., Itai, R.N., Yamakawa, T., Nakanishi, H., Nishizawa, N.K., and Kobayashi, T. (corresponding author) (2014) The Bowman-Birk trypsin inhibitor IBP1 interacts with and prevents degradation of IDEF1 in rice. Plant Mol. Biol. Rep. 32, 841-851.

44. Xiong, H., Guo, X., Kobayashi, T., Kakei, Y., Nakanishi, H., Nozoye, T., Zhang, L., Shen, H., Qiu, W., Nishizawa, N.K., and Zuo, Y. (2014) Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition. Plant Physiol. Biochem. 80, 83-89.

43. Nozoye, T., Tsunoda, K., Nagasaka, S., Bashir, K., Takahashi, M., Kobayashi, T., Nakanishi, H., and Nishizawa, N.K. (2014) Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Signal. Behav. 9, e28860.

42. Ogo, Y., Kakei, Y., Itai, R.N., Kobayashi, T., Nakanishi, H., Takahashi, H., Nakazono, M., and Nishizawa, N.K. (2014) Spatial transcriptomes of iron-deficient and cadmium-stressed rice. New Phytol. 201, 781-794.

41. Nozoye, T., Nagasaka, S., Bashir, K., Takahashi, M., Kobayashi, T., Nakanishi, H., and Nishizawa, N.K. (2014) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J. 77, 246-260.

2013年
40. Kobayashi, T. (corresponding author), Nagasaka, S., Senoura, T., Itai, R.N., Nakanishi, H. and Nishizawa, N.K. (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat. Commun. 4, 2792.

39. Kakei, Y., Ogo, Y., Itai, R.N., Kobayashi, T., Yamakawa, T., Nakanishi, H. and Nishizawa, N.K. (2013) Development of a novel prediction method of cis-elements to hypothesize collaborative functions of cis-element pairs in iron-deficient rice. Rice 6, 22.

38. Itai, R.N., Ogo, Y., Kobayashi, T., Nakanishi, H. and Nishizawa, N.K. (2013) Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice 6, 16.

37. Xiong, H., Kakei, Y., Kobayashi, T., Guo, X., Nakazono, M., Takahashi, H., Nakanishi, H., Shen, H., Zhang, F., Nishizawa, N.K. and Zuo, Y. (2013) Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant Cell Environ. 36, 1888-1902.

36. Aung, M.S., Masuda, H., Kobayashi, T., Nakanishi, H., Yamakawa, T., Nishizawa, N.K. (2013) Iron biofortification of Myanmar rice. Front. Plant Sci. 4, 158.

35. Masuda, H., Kobayashi, T., Ishimaru, Y., Takahashi, M., Aung, M.S., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2013) Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci. 4, 132.

2012年
34. Kobayashi, T., Itai, R.N., Aung, M.S., Senoura, T., Nakanishi, H. and Nishizawa, N.K. (2012) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J. 69, 81-91.

33. Kakei, Y., Ishimaru, Y., Kobayashi, T., Yamakawa, T., Nakanishi, H. and Nishizawa, N.K. (2012) OsYSL16 plays a role in the allocation of iron. Plant Mol Biol. 79, 583-594.

32. Masuda, H., Ishimaru, Y., Aung, M.S., Kobayashi, T., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H. and Nishizawa, N.K. (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci. Rep. 2, 543.

31. Xiong, H., Kobayashi, T., Kakei, Y., Senoura, T., Nakazono, M., Takahashi, H., Nakanishi, H., Shen, H., Duan, P., Guo, X., Nishizawa, N.K. and Zuo, Y. (2012) AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J. Exp. Bot. 63, 4437-4446.

2011年
30. Ogo, Y., Itai, R.N., Kobayashi, T., Aung, M.S., Nakanishi, H. and Nishizawa, N.K. (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol. Biol. 75, 593-605.

29. Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H. and Nishizawa, N.K. (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 286, 5446-5454.

2010年
28. Kobayashi, T.*, Ogo, Y.*, Aung, M.S.*, Nozoye, T., Itai, R.N., Nakanishi, H., Yamakawa, T. and Nishizawa, N.K. (2010) The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Annals Bot. 105, 1109-1117.

2009年
27. Kobayashi, T., Itai, R.N., Ogo, Y., Kakei, Y., Nakanishi, H., Takahashi, M. and Nishizawa, N.K. (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J. 60, 948-961.


26. Aoyama, T.*, Kobayashi, T.*, Takahashi, M., Nagasaka, S., Usuda, K., Kakei, Y., Ishimaru, Y., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2009) OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol. Biol. 70, 681-692.


25. Inoue, H.*, Kobayashi, T.*, Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 284, 3470-3479.

24. Kakei, Y., Yamaguchi, I., Kobayashi, T., Takahashi, M., Nakanishi, H., Yamakawa, T. and Nishizawa, N.K. (2009) A highly sensitive, quick, and simple quantification method for nicotianamine and 2'-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol. 50, 1988-1993.

23. Masuda, H., Usuda, K., Kobayashi, T., Ishimaru, Y., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2, 155-166.

22. Ito, S., Inoue, H., Kobayashi, T., Yoshiba, M., Mori, S., Nishizawa, N.K. and Higuchi, K. (2009) Comparison of the functions of the barley nicotianamine synthase gene HvNAS1 and rice nicotianamine synthase gene OsNAS1 promoters in response to iron deficiency in transgenic tobacco. Soil Sci. Plant Nutr. 55, 277-282.

21. Takahashi, M., Nozoye, T., Kitajima, N., Fukuda, N., Hokura, A., Terada, Y., Nakai, I., Ishimaru, Y., Kobayashi, T., Nakanishi, H. and Nishizawa, N.K. (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence imaging of Fe, Zn, Mn, and Cu. Plant Soil 325, 39-51.

20. Usuda, K., Wada, Y., Ishimaru, Y., Kobayashi, T., Takahashi, M., Nakanishi, H., Nagato, Y., Mori, S. and Nishizawa, N.K. (2009) Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotech. J. 7, 87-95.

2008年
19. Ogo, Y.*, Kobayashi, T.*, Itai, R.N., Nakanishi, H., Kakei, Y., Takahashi, M., Toki, S., Mori, S. and Nishizawa, N.K. (2008) A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J. Biol. Chem. 283, 13407-13417.

18. Inoue, H., Takahashi, M., Kobayashi, T., Suzuki, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol. Biol. 66, 193-203.

17. Masuda, H., Suzuki, M., Morikawa, K.C., Kobayashi, T., Nakanishi, H., Takahashi, M., Saigusa, M., Mori, S. and Nishizawa, N.K. (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1, 100-108.

2007年
16. Kobayashi, T.*, Ogo, Y.*, Itai, R.N., Nakanishi, H., Takahashi, M., Mori, S. and Nishizawa, N.K. (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc. Natl. Acad. Sci. USA 104, 19150-19155.

15. Kobayashi, T., Yoshihara, T., Itai, R.N., Nakanishi, H., Takahashi, M., Mori, S. and Nishizawa, N.K. (2007) Promoter analysis of iron-deficiency-inducible barley IDS3 gene in Arabidopsis and tobacco plants. Plant Physiol. Biochem. 45, 262-269.

14. Ogo, Y., Itai, R.N., Nakanishi, H., Kobayashi, T., Takahashi, M., Mori, S. and Nishizawa, N.K. (2007). The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J. 51, 366-377.

13. Bashir, K., Nagasaka, S., Itai, R.N., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol. Biol. 65, 277-284.

12. Ito, S., Inoue, H., Kobayashi, T., Yoshiba, M., Mori, S., Nishizawa, N.K. and Higuchi, K. (2007) Interspecies compatibility of the NAS1 gene promoters. Plant Physiol. Biochem. 45, 270-276.

11. Ishimaru, Y., Kim, S., Tsukamoto, T., Oki, H., Kobayashi, T., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl. Acad. Sci. USA 104, 7373-7378.

2006年
10. Ogo, Y., Itai, R.N., Nakanishi, H., Inoue, H., Kobayashi, T., Suzuki, M., Takahashi, M., Mori, S. and Nishizawa, N.K. (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J. Exp. Bot. 57, 2867-2878.

9. Wada, Y., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2006) Metabolic engineering of Saccharomyces cerevisiae producing nicotianamine: potential for industrial biosynthesis of a novel antihypertensive substrate. Biosci. Biotech. Biochem. 70, 1408-1415.

8. Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 45, 335-346.

2005年
7. Kobayashi, T., Suzuki, M., Inoue, H., Itai, R.N., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J. Exp. Bot. 56, 1305-1316.

6. Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J. Exp. Bot. 56, 3207-3214.

2004年
5. Kobayashi, T.*, Nakayama, Y.*, Takahashi, M., Inoue, H., Nakanishi, H., Yoshihara, T., Mori, S. and Nishizawa, N.K. (2004) Construction of artificial promoters highly responsive to iron deficiency. Soil Sci. Plant Nutr. 50, 1167-1175.

2003年
4. Kobayashi, T., Nakayama, Y., Itai, R.N., Nakanishi, H., Yoshihara, T., Mori, S. and Nishizawa, N.K. (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J. 36, 780-793.

3. Kobayashi, T., Yoshihara, T., Jiang, T., Goto, F., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2003) Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiol. Plant. 119, 400-408.

2. Yoshihara, T., Kobayashi, T., Goto, F., Masuda, T., Higuchi, K., Nakanishi, H., Nishizawa, N.K. and Mori, S. (2003) Regulation of the iron-deficiency responsive gene, Ids2, of barley in tobacco. Plant Biotech. 20, 33-41.

2001年
1. Kobayashi, T.*, Nakanishi, H.*, Takahashi, M., Kawasaki, S., Nishizawa, N.K. and Mori, S. (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice. Planta, 212, 864-871.


学位論文

1. 小林高範 (2003) 博士論文「植物の鉄欠乏誘導性シスエレメントに関する研究」東京大学大学院農学生命科学研究科 学位論文審査会


著書(計17編、うち筆頭著者14編)

17. 小林高範 (2024) 「第5章 植物の必須微量元素 1. 鉄」植物栄養学 第3版 (馬建鋒・信濃卓郎・高野順平 編)文永堂出版 p. 139-150. 2024年7月出版 ISBN 978-4-8300-4145-7

16. 小林高範 (2024) 「植物の鉄欠乏応答メカニズムを利用した鉄欠乏耐性・鉄富化植物の創製」北陸経済研究 2024年2月号 Vol. 520, p. 32-33(2024年1月25日発行)

15. 鈴木基史・小林高範・中西啓仁・難波康祐 (2023) 「鉄肥料となるムギネ酸誘導体の開発」植物の生長調節 58巻1号(2023年6月発行)

14. 田畑亮・小林高範 (2023)「植物の鉄獲得戦略を支える分子メカニズム 植物の低鉄環境に対する適応戦略の理解とその応用」化学と生物 Vol. 61, No. 5, p. 237-245.

13. 小林高範 (2023)「トピックス6-2 鉄栄養の長距離シグナル機能」新植物栄養・肥料学 改訂版 編著:米山忠克、長谷川功、関本均 発行所:朝倉書店 p. 145-146.

12. 小林高範 (2022)「植物細胞における鉄感知メカニズム」生物工学会誌 Vol. 100, No. 6, p. 318.

11. 小林高範 ・鈴木基史・難波康祐 (2021)「アルカリ性不良土壌での農業を可能にする環境調和型鉄吸収促進剤の開発」バイオサイエンスとインダストリー Vol. 79, No. 5, p. 386-387.

10. 小林高範 (2021)「進歩総説:植物のミネラル輸送研究最前線 10. 鉄の輸送とその制御機構」日本土壌肥料学雑誌Vol. 92, No. 2, p.141-147.

9. 小林高範 (2021) 「植物の鉄欠乏応答メカニズム、ミネラル含量の多い作物の創出」生命金属ダイナミクス 生体内における金属の挙動と制御 監修:城典嗣、津本浩平 発行所:株式会社エヌ・ティー・エス p. 76-83.

8. Masuda, H., Aung, M.S., Kobayashi, T. and Nishizawa, N.K. (2020) Iron biofortification: the gateway to overcoming hidden hunger; in The Future of Rice Demand: Quality Beyond Productivity, ed. de Oliveira, A.C., Pegoraro, C., Viana, V.E. p. 149-177, Springer Inc.

7. 小林高範 (2019)「植物における鉄の認識と鉄関連遺伝子の発現制御~鉄欠乏耐性・高ミネラル栄養イネの作出へ向けて~」化学と生物 Vol. 57, No. 12, p. 728-735.

6. 小林高範 (2019)「農業生産と環境保全、高ミネラル作物の開発へ向けた植物の鉄の研究」石川県立大学産学官ネットワークナウ. 石川県立大学産学官学術交流センター Vol. 22, p. 5.

5. 小林高範 (2017)「植物、鉄とユビキチンリガーゼ」ユビキチンネオバイオロジー ニュースレター. 新学術領域「ユビキチンネオバイオロジー」ニュースレター編集局 p. 7-11.

4. Kobayashi, T., Nakanishi, H. and Nishizawa, N.K. (2009) Genes involved in iron acquisition and their application for developing new crops. Gamma Field Symposia 48.

3. Kobayashi, T. and Nishizawa, N.K. (2008) Regulation of iron and zinc uptake and translocation in rice; in Rice Biology in the Genomics Era, ed. Hirano, H.Y., Hirai, A., Sano, Y. and Sasaki, T., p. 321-335, Springer Inc.

2. Kobayashi, T., Nishizawa, N.K. and Mori, S. (2006) Molecular analysis of iron-deficient Graminaceous plants; in Iron Nutrition in Plants and Rhizospheric Microorganisms, ed. Barton, L.L. and Abadía, J., p. 395-435, Springer Inc.

1. 小林高範・西澤直子 (2012) 「植物の鉄欠乏応答メカニズム」血液フロンティア Vol. 22, No. 1, p. 100-104.


総説(計11編、うち筆頭著者8編)(* : equal contribution)

11. Bashir, K., Ahmad, Z., Kobayashi, T., Seki, M. and Nishizawa, N.K. (2021) Roles of subcellular metal homeostasis in crop improvement. J. Exp. Bot. 72, 2083-2098. DOI: 10.1093/jxb/erab018

10. Kobayashi, T. (corresponding author) (2019) Understanding the complexity of iron sensing and signaling cascades in plants. Plant Cell Physiol. 60, 1440-1446.

9. Rodríguez-Celma, J., Chou, H., Kobayashi, T., Long, T.A. and Balk, J. (2019) Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants. Front. Plant Sci. 10: 98.

8. Kobayashi, T.*, Nozoye, T*. and Nishizawa, N.K. (2019) Iron transport and its regulation in plants. Free Radic. Biol. Med. 133: 11-20.

7. Bashir, K., Rasheed, S., Kobayashi, T., Seki, M. and Nishizawa, N.K. (2016) Regulating subcellular metal homeostasis: the key to crop improvement. Front. Plant Sci.7, 1192. doi: 10.3389/fpls.2016.01192

6. Kobayashi, T. and Nishizawa, N.K. (2015) Intracellular iron sensing by the direct binding of iron to regulators. Front. Plant Sci. 6, 155.

5. Kobayashi, T., Itai, R.N. and Nishizawa, N.K. (2014) Iron deficiency responses in rice roots. Rice 7, 27.

4. Kobayashi, T. and Nishizawa, N.K. (2014) Iron sensors and signals in response to iron deficiency. Plant Sci. 224, 36-43.

3. Kobayashi, T. and Nishizawa, N.K. (2012) Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63, 131-152.

2. Kobayashi, T., Nakanishi, H. and Nishizawa, N.K. (2010) Recent insights into iron homeostasis and their application in graminaceous crops. Proc. Jpn. Acad. Ser. B. 86, 900-913.

1. Kobayashi, T., Nakanishi, H., Takahashi, M., Mori, S. and Nishizawa, N.K. (2008) Generation and field trials of transgenic rice tolerant to iron deficiency. Rice 1, 144-153.


補遺(計2編、うち筆頭著者1編)

2. Ogo, Y., Kakei, Y., Itai, R.N., Kobayashi, T., Nakanishi, H., Nishizawa, N.K. (2014) Tissue-specific transcriptional profiling of iron-deficient and cadmium-stressed rice using laser capture microdissection. Plant Signal. Behav. 9, e29427.

1. Kobayashi, T., Nakanishi, H. and Nishizawa, N.K. (2010) Dual regulation of iron deficiency response mediated by the transcription factor IDEF1. Plant Signal. Behav. 5, 157-159.


特許(計3件)

3. 「新規鉄・亜鉛結合性制御因子と、その発現調節による植物の鉄欠乏耐性向上及び可食部への鉄・亜鉛蓄積の促進技術」
 発明者:小林高範、西澤直子
 出願人:独立行政法人科学技術振興機構
特許第5553324号 平成26年6月6日登録
 国際出願番号:PCT/JP2013/069628
 国際出願日:平成25年(2013年)7月19日

2. 「植物の鉄欠乏耐性を向上させるポリペプチドおよびその利用」
 発明者:西澤直子、森敏、小林高範、小郷裕子
 出願人:独立行政法人科学技術振興機構
特許第4998809号 平成24年5月25日登録

1. 「植物の鉄欠乏応答性及び/又は根特異的発現を付与するシスエレメント」
 発明者:西澤直子、森敏、小林高範、吉原利一
 出願人:独立行政法人科学技術振興機構、財団法人電力中央研究所
特許第4439844号 平成22年1月15日登録




バナースペース

石川県立大学 生物資源工学研究所
植物細胞工学研究室

〒921-8836
石川県野々市市末松1丁目308番地

TEL 076-227-7505
FAX 076-227-7505